- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
McNair, Janise (2)
-
Nie, Zixiang (2)
-
Starke, Allen (2)
-
Agnew, Dennis (1)
-
Baker, Corey (1)
-
Hodges, Morgan (1)
-
Mangipudi, Pavan K (1)
-
Nagaraj, Keerthiraj (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
First responders and other tactical teams rely on mo- bile tactical networks to coordinate and accomplish emergent time- critical tasks. The information exchanged through these networks is vulnerable to various strategic cyber network attacks. Detecting and mitigating them is a challenging problem due to the volatile and mobile nature of an ad hoc environment. This paper proposes MalCAD, a graph machine learning-based framework for detecting cyber attacks in mobile tactical software-defined networks. Mal- CAD operates based on observing connectivity features among various nodes obtained using graph theory, instead of collecting information at each node. The MalCAD framework is based on the XGBOOST classification algorithm and is evaluated for lost versus wasted connectivity and random versus targeted cyber attacks. Results show that, while the initial cyber attacks create a loss of 30%–60% throughput, MalCAD results in a gain of average throughput by 25%–50%, demonstrating successful attack mitigation.more » « less
-
Starke, Allen; Nie, Zixiang; Hodges, Morgan; Baker, Corey; McNair, Janise (, 2019-2019 IEEE Military Communications Conference (MILCOM))In this paper, we propose a responsive autonomic and data-driven adaptive virtual networking framework (RAvN) to detect and mitigate anomalous network behavior. The proposed detection scheme detects both low rate and high rate denial of service (DoS) attacks using (1) a new Centroid-based clustering technique, (2) a proposed Intragroup variance technique for data features within network traffic (C.Intra) and (3) a multivariate Gaussian distribution model fitted to the constant changes in the IP addresses of the network. RAvN integrates the adaptive reconfigurable features of a popular SDN platform (open networking operating system (ONOS)); the network performance statistics provided by traffic monitoring tools (such as T-shark or sflow-RT); and the analytics and decision-making tools provided by new and current machine learning techniques. The decision making and execution components generate adaptive policy updates (i.e. anomalous mitigation solutions) on-the-fly to the ONOS SDN controller for updating network configurations and flows. In addition, we compare our anomaly detection schemes for detecting low rate and high rate DoS attacks versus a commonly used unsupervised machine learning technique, Kmeans. Kmeans recorded 72.38% accuracy, while the multivariate clustering and the Intra-group variance methods recorded 80.54% and 96.13% accuracy respectively, a significant performance improvement.more » « less
An official website of the United States government
